Sci论文 - 至繁归于至简,Sci论文网。 设为首页|加入收藏
当前位置:首页 > 医学论文 > 正文

慢性肾脏病高磷血症发生机制及治疗研究进展论文

发布时间:2020-04-24 11:17:11 文章来源:SCI论文网 我要评论














SCI论文(www.lunwensci.com):

摘要:高磷血症是慢性肾脏病进展过程中常见的并发症之一,是引起继发性甲状旁腺功能亢进、肾性骨营养不良、血管及组织钙化的重要原因。本文就近年来国内外研究报道,对慢性肾脏病高磷血症的机制、危害及其防治策略做一综述。

关键词:慢性肾脏病;高磷血症;机制;治疗

本文引用格式:张冰心,张晓艳.慢性肾脏病高磷血症发生机制及治疗研究进展[J].世界最新医学信息文摘,2019,19(80):88-89,91.

Research Development of Hyperphosphatemia in Chronic Kidney Disease

ZHANG Bing-xin,ZHANG Xiao-yan

(The Graduate school of Chang Zhi medical colledge,Changzhi Shanxi)

ABSTRACT:Hyperphosphatemia,a common complication of chronic kidney disease,causes secondary hyperparathyroidism,renal osteodystrophy and calcification of tissue and blood vessels.This article summarize the domestic and foreign research reports,reviews the mechanism and treatment of hyperphosphatemia in chronic kidney disease(CKD).

KEY WORDS:Chronic kidney disease;Hyperphosphatemia;Mechanism;Treatment

0引言

高磷血症是慢性肾脏病患者心血管疾病发生率的独立危险因素,且与患者全因死亡率、生存率密切相关。近年来,慢性肾脏病高磷血症引起了广泛关注,目前关于慢性肾脏病患者高磷血症机制及防治有了新的进展。

1慢性肾脏病高磷血症的机制

磷是机体维持正常生理功能的必须元素。人体含磷总量为700g,其中85%沉积在骨骼,14%在细胞内,1%在胞外体液中[1]。正常成年人的血清磷水平为2.5-4.5mg/dl(0.8-1.44mmol/L)。正常人每日摄取的磷为800-1500mg[2]。其中60-75%的磷在小肠吸收,且吸收是非饱和的,即摄入越多,吸收越多。肠道磷吸收的方式主要有两种,一种是经细胞主动转运,另一种是经细胞旁路途径吸收[3-5]。小肠上皮细胞表面有钠依赖性磷酸盐载体(sodium-dependent phosphate solute carrier SLC),可以同时将磷酸盐及钠转运至细胞内。钠依赖性磷酸盐转运体包括两大载体家族:SLC34、SLC20。SLC34,即NaPi2b,对肠道中的磷敏感性、亲和力高[6-8]。磷在小肠的另一个吸收途径是细胞旁路途径。磷酸盐及钠均通过小肠上皮细胞之间的紧密连接复合体到达细胞间质,被吸收利用。与NaPi2b相比,细胞旁路途径对肠道磷的吸收不会达到饱和状态,是肠道吸收磷的主要方式[9-12]。近端肾小管上皮细胞膜上分布着II型钠磷转运蛋白,NaPiIIa(Type IIa Na/pi cotransport proteins)和NaPiIIc(Type IIc Na/pi cotransport proteins),是主要的尿磷重吸收场所[13]。磷主要通过肾脏代谢,每日排出的磷等于摄入的磷。

\

 
体内磷稳态主要与肠道吸收及分泌、骨形成及吸收和肾脏的重吸收及排泄有关,由甲状旁腺激素、1-25羟维生素D及FGF-23三种激素调节。肾脏合成的1-25-二羟维生素D,可以促进肠道对磷的吸收。甲状旁腺激素通过刺激CYP27B1酶促进肾脏合成活性维生素D3间接促进磷的吸收[14]。FGF-23是一种由骨细胞合成的磷调节激素。现有研究证实FGF-23还可在肾脏合成,其合成可能与越来越差。肠道对磷的吸收途径主要是细胞旁路,受磷在肠道的电化学梯度影响,故体内处于高磷状态,肠道对磷的吸收不会受到太大的影响。随着肾小球滤过率的下降,毒素会在体内蓄积,体内蓄积的毒素会刺激骨骼释放沉积的磷酸盐[22]。维持性血液透析高磷血症患者,每周行2或3次血液透析,一次血液透析只能清除800-1000mg,这并不能完全清除多余的磷。以上可能是慢性肾脏病高磷血症产生的原因,但是主要原因仍是肾脏对磷清除能力的下降。

2慢性肾脏病高磷血症的危害

慢性肾脏病患者较少死于肾脏病本身,大多死于心血管疾病并发症。高磷血症会导致FGF-23持续升高,有研究表明慢性肾脏病患者血清FGF-23的水平与其左心室肥大相关,血清FGF-23浓度与左心室体积呈正相关[23]。通过阻断FGF-23受体可阻止5/6肾切除小鼠左室肥大的发生[24]。除了对心脏结构的影响,高血磷还可引起室间隔壁细胞钙化[25]及主动脉平滑肌细胞炎症反应发生[26]。血磷还可以通过阻断NO途径损伤血管内皮细胞,影响血管内皮细胞功能[27]。近期有随机对照研究显示提高正常肾功能患者的磷摄入会导致收缩压、舒张压明显升高及尿蛋白的增加,这可能与高血磷提高交感神经活性有关[28]。高磷血症是慢性肾脏病患者心血管疾病加速进展的独立危险因素[27]。韩国一项观察性研究提示高血磷与慢性肾脏病的进展有关,但具体机制仍需进一步研究[29]。高磷血症是继发性甲状旁腺功能亢进、肾性骨营养不良、血管及组织钙化的重要原因,与慢性肾脏病患者心血管疾病发生率[30]、全因死亡率、生存率密切相关[31-33]。寻找安全有效的控制高磷血症的治疗方式是我们不断研究的目标。

3慢性肾脏病高磷血症的防治

目前治疗高磷血症的途径主要是减少磷的摄入,比如低磷饮食、磷结合剂的使用,增加磷的排出,如充分透析。人体从胃肠道吸收的磷主要来自食物及药物。植物中谷物及种子含磷相对高。鱼、肉、牛奶富含磷,且在人胃肠道的吸收率较TGFβ1有关[15]。肾源性FGF-23对尿毒症期血FGF-23水平无影植物类食物高[34]。以植物蛋白为主的饮食是否可减少磷的摄入值得研究。市场上有许多药物辅料中也含有磷。比如有些口服的响[16]。研究表明甲状旁腺激素及1-25羟维生素D也可上调FGF-23[17]。FGF-23的靶器官主要是肾脏、甲状旁腺及心脏。FGF-23对肾脏有两个作用:(1)作用于肾小管NaPiIIa和NaPiIIc,促使肾小管对磷的重吸收减少;(2)使1-25羟化酶活性下降,1-25羟维生素D3减少,减少肠道磷吸收[18]。甲状旁腺激素和FGF-23均可增加尿磷的排泄,但有研究表明FGF-23的磷调节作用更强[19]。

随着肾功能的下降,血磷排泄减少,体内磷平衡被打破。早期,机体尚可代偿,但随着肾功能的进一步下降,调节机制异常,高磷血症随之产生。有研究表明FGF-23与其分布在肾脏的受体结合,需要Klotho蛋白的参与。肾脏高表达klotho蛋白,但随着肾功能的下降,该蛋白的合成会减少,FGF-23的降磷作用持续下降,血磷会持续性升高[20-21]。FGF-23还可作用于甲状旁腺减少PTH的合成,这进一步降低了降磷作用。到了慢性肾脏病后期,PTH降磷作用会降糖药、抗抑郁药、抗高血压药、胃肠道用药抑酸剂等。有些加工食品为了保鲜、防腐、增味会添加含磷化合物。药物和食物中添加的含磷化合物均为无机磷,无机磷在人胃肠道极易被吸收,吸收率几乎为100%。有研究表明CKD3-5期的患者,每日磷的摄入量应控制在700mg/d[35]。高磷饮食会增加磷的摄入,但是过低磷饮食会刺激胃肠道对磷的吸收,同时也会促进肾小管重吸收磷。低磷饮食的情况下,口服磷结合剂,会使肠道磷浓度过低,从而促进磷的吸收[36]。当我们限制患者磷摄入时,会严重影响蛋白质的摄入,造成患者营养不良。所以,低磷饮食是控制高磷血症的一种方式,但是实现起来却有诸多困难。给患者适当进行低磷饮食教育也可以在一定程度上帮助患者减少磷摄入[37]。

口服磷结合剂、低磷饮食、充分透析是维持性血液透析患者的基本的治疗。但是这对于高磷血症的管理是不够的[38]。目前有一种新的限制磷摄入的治疗方法,即直接以肠道磷转运途径为靶目标,减少小肠对磷的吸。目前有两种相关药物正在进行临床试验,NaPi2b抑制剂烟酰胺和NHE3抑制剂tenapanor[39]。

Tenapanor是一种新研发的治疗便秘型易激综合征的胃肠道用药,但是研究发现其可通过减少肠道磷的吸收,降低血磷,故可能用于慢性肾脏病患者高磷血症的治疗,目前该药物正在进行临床试验。tenapanor是小分子NHE3抑制剂,且很少被机体吸收,不会增加机体药物负荷[40]。钠氢交换体(sodium/hydrogen exchanger isoform,NHE)广泛分布于人体各种细胞及组织中,共有9种亚型。其中NHE3分布于上皮细胞基底膜表面,主要表达于胃肠道及肾脏[41]。Andrew J.King等[42]研究者利用人类小肠上皮细胞体外试验证明,在NHE3的介导下,质子分泌耦合钠离子的吸收,造成局部酸化,降低跨膜电阻,增加小肠上皮组织对磷酸盐的通透性。Tenapanor抑制了这种耦合机制,降低了肠道对磷酸盐的通透性。动物试验研究表明,tenapanor主要减少小肠对磷和钠的吸收,对氯离子、钙离子及镁离子的作用较弱且不影响钠依赖的葡糖糖的吸收,进一步说明tenapanor对磷酸盐及钠具有高度选择性。健康成年志愿者口服tenapanor,明显增加了大便中磷含量,减少了尿磷,减少了肠道对磷的吸收。Tenapanor不仅抑制了肠道对钠和磷的吸收,且明显减少小鼠异位钙化,降低了血肌酐、血磷、FGF-23水平[43]。Geoffrey A Block等[44]研究人员进行了一项为期4周的随机对照试验,评估了tenapanor对162名维持性血液透析高磷血症患者的治疗作用。结果显示tenapanor具有很好的降磷效果,且呈剂量依赖性,但最佳的降磷浓度仍需进一步的研究。Tenapanor对患者血清甲状旁腺激素没有明显的影响,但明显降低了FGF-23的浓度。也有动物研究表明,tenapanor可减少CKD小鼠的血清FGF-23浓度[45]。Tenapanor是否降低FGF-23仍然需要大样本研究。腹泻是tenapanor的主要不良反应,剂量越大,不良反应率越高。故我们仍需大量的临床试验探索tenapanor最优的治疗剂量。

严格控制血透患者透析间期体质量可减少心血管不良反应预后,降低病死率。Tenapanor不仅减少了肠道对磷的吸收,同时也降低了肠道对钠的吸收。总所周知,透析间期体质量的增加与钠摄入有关。有资料显示肾脏切除的小鼠在经过高盐饮食饲养后,出现了高血容量、心肌肥大、动脉硬化。CKD小鼠在经过tenapanor处理后,改善了胞外液体潴留、左心室肥大、蛋白尿及血压[40]。Geoffrey A Block[46]发表了一篇临床随机对照试验研究,评估了tenapanor对72名血透患者透析间期体质量的影响。在第1周时,与安慰剂相比tenapanor治疗增加了大便中的磷含量及大便的重量。然而,在经过4周的治疗之后,tenapanor和安慰剂组透析间期的体质量没有明显的差别。不同的时间点产生了不同的结果,可能与样本量不够、随访时间短有关,故tenapanor对维持性血液透析患者透析间期体重是否有影响仍需大量的临床试验进行验证。

\

 
4结语

高磷血症是慢性肾脏病常见且严重影响慢性肾脏病患者临床预后的并发症,关于它的病理生理机制需要进一步研究。血磷与慢性肾脏病心血管疾病密切相关,但其关系仍需深入研究。抑制肠道对磷的吸收是一个新的控制血磷的治疗方向。Tenapanor可降低血磷,但其最佳治疗剂量、是否减少透析患者透析间期体重增加及其他临床预后的影响仍需大量的临床试验研究来证明。

参考文献

[1]Moorthi,R.N,Moe,S.M.CKD-mineral and bone disorder,Core curriculum 2011[J].Am.J.Kidney Dis,2011,58:1022-1036.
[2]Health.gov[Internet].Rockville,MD,Office of Disease Prevention and Health Promotion[M].2016 Jul.Dietary Guidelines for Americans 2015-2020,8th Edition,2016.
[3]Y.Sabbagh,H.Giral,Y.et al.Intestinal phosphate transport.Adv[J].Chronic Kidney Dis,2011,18:85-90.
[4]J.Marks,E.S.Debnam,R.J.Unwin,The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease[J].Curr.Opin.Nephrol.Hypertens,2013,22:481-487.
[5]J.Amanzadeh,R.F.Reilly Jr,Hypophosphatemia:An evidence-based approach to its clinical consequences and management[J].Nat.Clin.Pract.Nephrol,2006,2:136-148.
[6]N.Hernando,K.Myakala,F.Simona,et al,Intestinal depletion of NaPi-IIb/Slc34a2 in mice:Renal and hormonal adaptation[J].J.Bone Miner.Res,2015,30:1925-1937.
[7]Y.Sabbagh,S.P.O’Brien,W.Song,et al,Intestinal npt2b plays a major role in phosphate absorption and homeostasis.J.Am.Soc[J].Nephrol,2009,20:2348-2358.
[8]S.C.Schiavi,W.Tang,C.Bracken,S.P.O’Brien,et al,Npt2b deletion attenuates hyperphosphatemia associated with CKD.J.Am.Soc[J].Nephrol,2012,23:1691-1700.
[9]J.Walton,T.K.Gray,Absorption of inorganic phosphate in the human small intestine.Clin[J].Sci,1979,56:407-412.
[10]D.Günzel,M.Fromm,Claudins and other tight junction proteins[J].Compr.Physiol,2012,2:1819-1852.
[11]D.Günzel,A.S.L.Yu,Claudins and the modulation of tight junction permeability.Physiol[J].Rev,2013,93:525-569.
[12]D.B.Lee,M.W.Walling,D.B.Corry,Phosphate transport across rat jejunum:Influence of sodium,pH,and 1,25-dihydroxyvitamin D3.Am.J[J].Physiol,1986,251(Pt.1):G90-G95.
[13]Ullrich,K.J.;Murer,H.Sulphate and phosphate transport in the renal proximal tubule.Philos[J].Trans.R.Soc.B Biol.Sci,1982,299:549-558.
[14]Williams,K.B.;DeLuca,H.F.Characterization of intestinal phosphate absorption using a novel in vivo method[J].AJP:Endocrinol.Metab,2007,292:E1917-E1921.
[15]Hidekazu Sugiura,Ai Matsushita,et al.Fibroblast growth factor 23 is upregulated in the kidney in a chronic kidney disease rat model[J].PLoS One,2018,13(3):e0191706.
[16]Maria L Mace,Eva Gravesen,et al Energy-dense diets increase FGF23,lead to phosphorus retention and promote vascular calcifications in rats[J].Kidney Int,2017,92(1):165-178.
[17]Bergwitz,C;Juppner,H.Regulation of phosphate homeostasis by PHD,vitamin D,and FGF23[J].Annu.Rev.Med,2010,61:91-104.
[18]Aline Martin.,Valentin David.,L Darryl Quarles:Regulation and function of the FGF23/klotho endocrine pathways Physiol Rev[J].2012,92(1):131-55.
[19]Ritter,C.S.;Slatopolsky,E.Phosphate toxicity in CKD:The killer among us[J].CJASN,2016,11:1088-1100.
[20]Teruyo Nakatani,Mutsuko Ohnishi.et al.Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic(Hyp)mouse model[J].FASEB J,2009,23(11):3702-11.
[21]Ming Chang Hu,Kazuhiro Shiizaki,et al.Fibroblast Growth Factor 23 and Klotho:Physiology and Pathophysiology of an Endocrine Network of Mineral Metabolism[J].Annu Rev Physiol,2013,75:503-33.
[22]Iwasaki Y,Kazama JJ,et al.Altered material properties are responsible for bone fragility in rats with chronic kidney injury[J].Bone,2015,81:247-54.
[23]Faul,C,Amaral,A.P,Oskouei,B.,et al.FGF23 induces left ventricular hypertrophy[J].J.Clin.Investig,2011,121:4393-4408.
[24]Giovana Seno Di Marco.,Stefan Reuter.,et al.Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD[J].Nephrol Dial Transplant,2014,29(11):2028-35.
[25]Y Wang,Y Yu,H X Zhang,et al.The expression of Akt/mTOR in VSMC calcification induced by high phosphate and its regulation of Cbfα1[J].2018,98(18):1446-1451.
[26]Martínez-Moreno JM,Herencia C,de Oca AM,et al.:High phosphate induces a pro-inflammatory response by vascular smooth muscle cells and modulation by vitamin D derivatives[J].Clin Sci(Lond),2017,131(13):1449-1463.
[27]Kathryn K Stevens,Laura Denby,Rajan K Patel,et al.Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway Nephrol Dial Transplant[J].2017,32(10):1617-1627
[28]Jaber Mohammad,Roberto Scanni,et al.A Controlled Increase in Dietary Phosphate Elevates BP in Healthy Human Subjects[J].J Am Soc Nephrol,2018,29(8):2089-2098.
[29]Hyoungnae Kim,Jimin Park,et al.The effect of interactions between proteinuria,activity of fibroblast growth factor 23 and serum phosphate on renal progression in patients with chronic kidney disease:a result from the KoreaN cohort study for Outcome in patients With Chronic Kidney Disease study[J].Nephrol Dial Transplant,2019.
[30]Block GA,Kilpatrick RD,Lowe KA,et al.CKD-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis[J].Clin J Am Soc Nephrol,2013,8(12):2132-2140.
[31]Floege J,Kim J,Ireland E,et al.Serum iPTH,calcium and phosphate,and the risk of mortality in a European haemodialysis population[J].Nephrol Dial Transplant,2011,26(6):1948-1955.
[32]Chang AR,Grams ME:Serum phosphorus and mortality in the Third National Health and Nutrition Examination Survey(NHANES III):Effect modification by fasting[J].Am J Kidney Dis,2014,64:567-573.
[33]Isakova T,Xie H,Yang W,et al;Chronic Renal Insufficiency Cohort(CRIC)Study Group:Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease[J].JAMA,2011,305:2432-2439.
[34]Elder GJ,Malik A,Lambert K:Role of dietary phosphate restriction in chronic kidney disease[J].Nephrology(Carlton),2018,23(12):1107-1115.
[35]K/DOQI clinical practice guidelines for bone metabolism and disease in
chronic kidney disease[J].Am J Kidney Dis,2003,42(4 Suppl 3):S1-S201.
[36]Williams KB,DeLuca HF.Characterization of intestinal phosphate absorption using a novel in vivo method[J].Am J Physiol Endocrinol Metab,2007,292:E1917-E1921.
[37]Eunsoo Lim,Sunah Hyun,et al.Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients:A randomized controlled trial[J].Kidney Res Clin Pract,2018,37(1):69-76.
[38]Wadi N Suki,Linda W Moore.Methodist Debakey:Phosphorus Regulation in Chronic Kidney Disease[J].Cardiovasc J,2016,12(4Suppl):6-9.
[39]Fouque D,Vervloet M,Ketteler M.Targeting Gastrointestinal Transport Proteins to Control Hyperphosphatemia in Chronic Kidney Disease[J].Drugs,2018,78(12):1171-1186.
[40]A.G.Spencer,E.D.Labonte,D.P.Rosenbaum,et al,Intestinal inhibition of the Na+/H+exchanger 3 prevents cardiorenal damage in rats and inhibits Na+uptake in humans[J].Sci.Transl.Med,2014,6,227-236.
[41]Noel,Roux D,Pouyssegur J.Differential localization of Na+/H+exchanger isoforms(NEH1 and NHE3)in polarized epithelial cell lines[J].Cell Sci,1996,109(5):929-939.
[42]Andrew J King,Matthew Siegel,et al.Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate.permeability.Sci[J].TranslMed,2018,10(456):eaam6474.
[43]Eric D Labonté,Christopher W Carreras,et al.Gastrointestinal Inhibition of Sodium-Hydrogen Exchanger 3 Reduces Phosphorus Absorption and Protects against Vascular Calcification in CKD[J].J Am Soc Nephrol,2015,26(5):1138-1149.
[44]Geoffrey A Block,David P Rosenbaum,et al.Effect of Tenapanor on Serum Phosphate in Patients Receiving Hemodialysis[J].J Am Soc Nephrol,2017,28(6):1933-1942.
[45]E.D.Labonté,C.W.Carreras,et al,Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD.J.Am.Soc[J].Nephrol,2015,26:1138-1149.
[46]Geoffrey A Block,David P Rosenbaum,et al,Effect of Tenapanor on Interdialytic Weight Gain in Patients on Hemodialysis[J].Clin J Am Soc Nephrol,2016,11(9):1597-1605.

关注SCI论文创作发表,寻求SCI论文修改润色、SCI论文代发表等服务支撑,请锁定SCI论文网!
文章出自SCI论文网转载请注明出处:https://www.lunwensci.com/yixuelunwen/14511.html

发表评论

Sci论文网 - Sci论文发表 - Sci论文修改润色 - Sci论文期刊 - Sci论文代发
Copyright © Sci论文网 版权所有 | SCI论文网手机版 | 鄂ICP备2022005580号-2 | 网站地图xml | 百度地图xml